Γ-convergence of power-law functionals with variable exponents

نویسندگان

  • Marian Bocea
  • Mihai Mihăilescu
چکیده

Γ-convergence results for power-law functionals with variable exponents are obtained. The main motivation comes from the study of (first-failure) dielectric breakdown. Some connections with the generalization of the ∞-Laplace equation to the variable exponent setting are also explored. 2000 Mathematics Subject Classification:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power-Law Approximation under Differential Constraints

We study the Γ-convergence of the power-law functionals

متن کامل

On the asymptotic behavior of variable exponent power–law functionals and applications

We study, via -convergence, the asymptotic behavior of several classes of power–law functionals acting on fields belonging to variable exponent Lebesgue spaces and which are subject to constant rank differential constraints. Applications of the -convergence results to the derivation and analysis of several models related to polycrystal plasticity arising as limiting cases of more flexible power...

متن کامل

Homogenization in Sobolev Spaces with Nonstandard Growth: Brief Review of Methods and Applications

We review recent results on the homogenization in Sobolev spaces with variable exponents. In particular, we are dealing with the Γ-convergence of variational functionals with rapidly oscillating coefficients, the homogenization of the Dirichlet and Neumann variational problems in strongly perforated domains, as well as double porosity type problems.The growth functions also depend on the small ...

متن کامل

Models for growth of heterogeneous sandpiles via Mosco convergence

In this paper we study the asymptotic behavior of several classes of power-law functionals involving variable exponents pn(·) → ∞, via Mosco convergence. In the particular case pn(·) = np(·), we show that the sequence {Hn} of functionals Hn : L(R )→ [0,+∞] given by Hn(u) =  ∫ RN λ(x) np(x) |∇u(x)| dx if u ∈ L(R ) ∩W 1,np(·)(RN ) +∞ otherwise, converges in the sense of Mosco to a functional ...

متن کامل

Variational Principles in L∞ with Applications to Antiplane Shear and Plane Stress Plasticity

The yield set of a polycrystal is characterized by means of a variational principle in L∞ obtained via Γ-convergence of a class of power-law functionals in the setting of A-quasiconvexity. Our results apply, in particular, to the model cases of antiplane shear and plane stress plasticity. 2000 AMS Mathematics Classification Numbers: 35F99, 35J70, 49K20, 49S05, 74C05

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009